Dites-nous en plus sur votre projet

Nous vous proposerons une formule adaptée à vos besoins, ainsi qu’une estimation de devis.
Laissez-vous guider

Pourquoi choisir Aneo pour votre projet ?

Aneo est une agence conseil en transformation qui vous accompagne tout au long de la vie de vos projets sur des problématiques de :

Le +  d’Aneo : le conseil sans frontière !

Notre richesse, c’est de vous proposer des équipes pluridisciplinaires, chaque membre avec une approche, une expérience et une sensibilité différente : coach agile, formateur soft skills, Data Scientist designer, Architecte etc. On mise sur la complémentarité des disciplines pour vous apporter la meilleure réponse !

Pourquoi choisir Aneo  pour votre projet ? - Aneo

Aneo, une organisation à part entière !

Depuis 2015, Aneo est une organisation plate à gouvernance plate. Aplatir la hiérarchie, supprimer les silos, instaurer des bonus collectifs, ce nouveau modèle d’organisation avec comme objectif: apporter plus de valeur  à l’entreprise, aux collaborateurs et aux clients.

Le + d’Aneo : l’inattendu !

La sérendipité, c’est « le don de faire par hasard des découvertes fructueuses ». Chez Aneo, nous croyons fermement que les meilleures solutions sont parfois les plus inattendues. Ne rien s’interdire, expérimenter, oser s’entourer de profils atypiques et avoir une obsession : apporter la juste valeur.

Aneo, une organisation à part entière !  - Aneo

Qui êtes-vous ?

Vous êtes pour

Votre secteur

1 seul choix possible
Assurance & Protection sociale
Banque et Finance
Industrie & Services
Santé

Vos besoins

Plusieurs choix possibles
IT & Digital
Transformation des Organisations
Stratégie Business
Pilotage de projets

Détails

Des précisions à ajouter sur votre projet ? (facultatif)
C'est noté !
Nous avons pris en compte les spécificités de votre projet.
Nos équipes vous contacteront sous 48h pour en discuter plus amplement.
Votre prénom *
Votre nom *
Votre adresse email pro *
Votre numéro de téléphone *
Bien reçu !
Nos équipes vous contacteront sous peu
pour discuter de votre projet.
Article

Vous trouvez que nous n’avons pas assez de préjugés ? Rassurez-vous, l’IA les amplifie…

« La France est à Paris ce que le Japon est à Tokyo. » « L’homme est au roi ce que la femme est à la reine. »

Une des approches les plus utilisées actuellement en intelligence artificielle construit ce type d’analogies. Lorsqu’on demande à une IA de ce type de compléter la proposition « L’homme est au roi ce que la femme est à X », elle répond « la reine ». L’IA aura appris ces analogies à partir d’un corpus de textes.
[* : Une introduction assez claire peut être trouvée (en anglais) à ce lien : A Simple Introduction to Word Embeddings]

En 2016, des chercheurs de l’université de Boston et du centre de recherche de Microsoft à Cambridge ont entraîné un tel système avec des textes récupérés sur Google news. Ses déductions sont assez saisissantes :

  • « L’homme est au développeur ce que la femme est à la ménagère »
  • « L’homme est au chirurgien ce que la femme est à l’infirmière »
  • « L’homme est au commerçant ce que la femme est à la femme au foyer »

Les chercheurs ont proposé une méthode pour compenser ce biais issu des données². Leur méthode nécessite toutefois une correction explicite et donc que ces biais soit identifiés
[² : tous les détails sont dans leur article https://arxiv.org/pdf/1607.06520.pdf]

Il y a statistiquement aujourd’hui plus de chirurgiens que de chirurgiennes et plus d’infirmières que d’infirmiers. C’est donc naturel que dans les articles de Google news, ces biais se retrouvent. L’algorithme s’appuyant sur ces données a simplement généralisé ces biais.

L’IA est également largement utilisé pour décrire les images. Un exemple d’application serait de détecter la présence d’une personne et de reconnaître ce qu’elle fait. Et les résultats peuvent être impressionnants : sur la photo suivante, un  algorithme est capable d’identifier qu’une femme cuisine des fruits avec un couteau dans une cuisine et qu’elle n’utilise pas d’instrument de cuisson.

Ici encore, l’algorithme a appris à partir des données fournies. Ici encore, il a appris des biais issus de ces données. Il les a même amplifié : lorsque la scène représente une personne qui cuisine, la moitié des hommes sont reconnus comme des femmes. Dans photos de cuisine contenaient 67% de femmes et 33% d’hommes. Après son apprentissage, l’algorithme y voyait 84% de femmes et 16% d’hommes. Les chercheurs de l’université de Virginie qui ont mis cette amplification en avant proposent une méthode* qui permet de la réduire. Elle conduit l’algorithme à reconnaître 80% de femmes et 20% d’hommes. Ils ont certes réduit le biais mais ne l’ont pas supprimé. Peut-être qu’ils y parviendraient en combinant leur approche et celle mentionné au début de cet article.

[* : tous les détails dans leur article https://homes.cs.washington.edu/~my89/publications/bias.pdf]

Cet article présente deux exemples de cas où les biais inclus dans les données d’apprentissage se retrouvent et se généralisent dans les réponses de deux algorithmes. La question qui se pose à nous est de savoir comment constituer des jeux de données non biaisés. Ou comment identifier tous les biais contenus dans ces données. C’est un exercice d’autant plus difficile que l’on demande justement aux data scientists qui analysent ces données de les « faire parler », de retrouver les signaux faibles.

Distinguer les signaux faibles des biais constitue une vraie difficulté. Pour y parvenir, il est nécessaire de connaître la réalité qui se cache derrière les données. Il est nécessaire de savoir que le métier de chirurgien n’est pas réservé aux hommes. Il est donc nécessaire que les data scientists travaillent main dans la main avec les sachant métier qui connaissent la réalité des choses.

Crédit : Wilfried KIRSCHENMANN

Ça peut aussi vous intéresser
Les Femmes et le Numérique : une histoire de « Je t’aime, moi non plus … »
17 novembre 2021

Les Femmes et le Numérique : une histoire de « Je t’aime, moi non plus … »

Cet article sur les Femmes et le Numérique fait partie de la série sur le thème « Numérique et RSE ». Ils sont publiés par une équipe de consultants Aneo. Ada Lovelace, la pionnière ayant créé la machine analytique… Grace Hopper, « the Queen of software » témoin du premier…
En savoir plus
Article
DevOps et modèles organisationnels
14 septembre 2021

DevOps et modèles organisationnels

Le mouvement DevOps se présente comme une culture impliquant les process, l’outillage et l’organisation. Si les deux premiers axes semblent couverts par des démarches méthodologiques et techniques éprouvées (lean, agilité, automatisation, craft …etc), l’axe organisationnel manque – quant à lui – d’abaques fiables. De ce fait il devient primordial avant…
En savoir plus
Article
Tech Intelligence #6 – Développement du numérique en Afrique : où en est-on ?
20 juillet 2021

Tech Intelligence #6 – Développement du numérique en Afrique : où en est-on ?

La série Tech Intelligence explore des sujets variés de la tech : cloud, cybersécurité, blockchain … Aujourd’hui, découvrez un rapide coup d’oeil sur le développement du numérique sur le continent africain. Cliquez ici pour retrouver les autres sujets traités par Tech Intelligence.  Tout miser sur la téléphonie…
En savoir plus
Article
Vous avez un projet de transformation
digitale pour votre entreprise ?